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ABSTRACT

A methodological appendix is provided, containing detailed definitions of the terms employed throughout the main article in
terms of Topological Data Analysis (TDA) and Social Network Analysis (SNA), as well as a review of the applications of TDA in
population genetics, epidemiology and similar fields. An analysis of the same data-set with a different TDA method is also
presented.

1 Topological data analysis

In this paper we used a tool derived from applied algebraic topology, the Mapper algorithm1, to visualize the evolution of the
populations over time. We also used a strategy5 to study evolution beyond phylogenetic trees, that allows capturing clonal
and reticulate evolution by means of representing clonal evolution through trees, having a trivial topology (although highly
non-trivial combinatorics) and reticulate evolution displaying nontrivial topologies.

Apart from detecting reticulate evolution, it is possible to determine the rate of recombination. Chan, Carlsson and Rabadan5

applied their methods to viral genomes due to the existence of rich data sets. Their framework is based on persistent homology,
a tool from the field of applied algebraic topology.

In this appendix we followed their framework and applied persistent homology to parasite genetic data from Guapi providing
more evidence on the existence of reticulate evolution.

Algebraic topology, a branch of mathematics, has been considered up to recently a purely theoretical subject, it studies



properties of objects that are invariant under continuous deformations. Examples, with these kind of properties, that do not
change under deformations are the number of components, or the number of holes in a space. In fact, algebraic topology
has seen spectacular results by developing sophisticated invariants and tools to study and measure high dimensional holes.
A central problem of algebraic topology, and other areas of mathematics such as differential geometry, is to understand the
relation between local and global features. Many of the tools of algebraic topology are designed to detect global properties
while ignoring local properties.

In the past decades a new sub-field has emerged which aims at using the underlying shape of data. Topological Data
Analysis (TDA), consists of a set of tools and algorithms based on ideas of algebraic topology that provide insights based on the
shape of data. These novel methods provide robust, coordinate-free and stable tools to complement traditional data analysis and
machine learning.

One of such tools, Mapper1, constructs a summary of the data in the form of a graph, generating a representation of complex
high dimensional data in a concise way. This graph allows for the analysis and visualisation of the information.

The vertices of the graph correspond to local clusters and the interactions between these clusters are encoded on the edges
of the graph. It gives at the same time information about what happens at small scales (the local clusters and its features) and at
large scales (the interaction of all local clusters giving rise to loops and flares).

Mapper is able to detect features at large and small scales better than other methods, such as principal component analysis
(PCA) and cluster algorithms. In fact, it can be considered as a hybrid of dimensional reduction and clustering algorithms.
Based on any dimensional reduction algorithm or on a set of relevant features on the data, a filter function is constructed.
The projection of the data with this filter function is a first approximation at capturing a global behaviour. By covering the
projection with overlapping bins and finding clusters in the original data in each bin, the local structure is revealed. Any
clustering algorithm can be used and to each cluster a node is assigned. Clusters that share points are connected and the way
these clusters interact forming loops and flares reveal the large scale behaviour.

Mapper has been used to find a subgroup of individuals with breast cancer that survived and was not discovered before2, 31,
to study the voting behaviour in the congress of the USA2, to find new types of basketball players in the NBA2, to study
pathogen persistence in soil13, to discover novel patterns in spinal and brain injury14, to find subgroups of individuals with
different complications from type 2 diabetes17, to study groups of patients of asthma15,16, to study infection cycles of mice and
humans infected with the malaria parasite18 and patterns of antibiotic resistance in pathogenic bacteria9.

We will explain the mathematical basis of the Mapper algorithm in the following sections. Further details can be found
elsewhere2, 3.

Persistence homology is another tool that offers remarkable applications: Persistent homology extracts the topological
features of a filtered topological space and represents it with diagrams and barcodes. The barcodes provide information on the
times when the topological features of the filtered space change.

Given some data with a notion of distance between the points, several spaces are constructed which are useful to study
the data. These spaces are built by gluing points, lines, triangles, and higher-dimensional analogues and are presented
mathematically as simplicial complexes.

Persistence homology has been applied to a number of fields, like the study of cancer32,33,34, proteins21,22,23,24,25, cell
development11,12, robotics26,27,28, signals in images29,30, periodicity in time series20, phylogenetics5,6,7,8,9 natural images36,
epidemiology37,38, materials science39,40,41,42 , networks in finance43,44, neuroscience45,46,47,48,49,50,51,52, classification of
weighted networks53, collaboration networks54,55, analysis of mobile data56, biological aggregation models57, time-series
output of dynamical systems58, natural-language analysis59 and lung topology in chronic obstructive pulmonary disease35.

1.1 Mathematical definitions
The aim of applied algebraic topology is to use the tools and techniques of algebraic topology to analyse high dimensional data.
In many settings, from a collection of points that are thought to be sampled from an underlying space X , it is desirable to extract
meaningful information from the points that capture geometric and topological information of X , by building a combinatorial
representation of the data in terms of different structures: graphs and more general simplicial complexes.

Graphs
A graph G is a pair of sets (V,E), called the vertices (or nodes) and edges respectively. For every edge there is a pair of vertices.
The graph is called simple if it has no loops (edges starting and ending on the same vertex) and no multiple edges between the
same pair of vertices. If it has multiple edges or loops it is called a multigraph.

An undirected graph is a graph in which edges have no orientation, a directed graph is a graph in which edges have
orientation. A directed acyclic graph is a directed graph with no directed cycles, i.e. there is no way to start at a vertex and
follow directed edges and eventually go back to the same vertex.
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Simplicial complexes
Definition 1 A simplicial complex is a set K with a collection S⊂ P(K), called simplices, such that:

1. If k ∈ K then {k} ∈ S,

2. If τ ⊂ σ ∈ S then τ ∈ S.

We call the singletons in S the vertices of K or 0-simplices. Also, we say that σ ∈ S is a k-simplex if |σ |= k+1. Moreover, we
will write each k-simplex σ = [x0,x1, . . . ,xk] for {x0,x1, . . . ,xk} ∈ S. The dimension of K is sup{|σ | | σ ∈ S}. The elements of
S are called its simplicies. If σ ∈ S, the dimension of σ is |σ |−1, the size of the set σ minus one. A simplex τ is a face of σ if τ

is a subset of σ of a strictly smaller size.

Definition 2 A sub-complex of a simplicial complex K is a subset L⊂ K which is also a simplicial complex.

Definition 3 A filtration of a simplicial complex K is a nested subsequence of complexes

/0 = K0 ⊂ K1 ⊂ ·· · ⊂ Km = K.

We will define Ki = K for any i≥ m.

In Figure S2 1 we present a filtration on a simplicial complex.

(a) K1 (b) K2 (c) K3 (d) K4 = K

Supplemental Figure S2 1. A filtration of the simplicial complex K.

Definition 4 (Clique complex) Given a graph G there is a simplicial complex given by the clique complex: from a graph
G = (V,E), the clique complex associated to G is the simplicial complex X whose k-simplices Xk are sets of vertices of G of
size (k+1) such that every two vertices are adjacent, i.e. form a complete subgraph of G.

Definition 5 (1-skeleton) Given a simplicial complex X, the 1-skeleton is the undirected graph with vertices, the 0-simplices
of X and the edges are the 1-simplices of X. It gives a 1-dimensional approximation of X ignoring the higher dimensional
information.

For applications to data science there are several simplicial complexes that are used.

Definition 6 (Nerve Complex) Given a space X and a covering {Uα}α∈∆ of X we define the nerve complex, as the the
simplicial complex whose k-simplices are given by

(N{Uα}α∈∆)k :=
{[
{Uα0 , . . . ,Uαk

]
|Uα0 ∩ . . .∩Uαk 6= /0

}
.

i.e. given by the elements of the covering with non-empty intersection.

The nerve lemma states that when the covering {Uα}α∈∆ is good, i.e every nonempty intersection is contractible, the nerve
complex and the space X have the same homotopy type and thus the space X and the nerve complex have the same topological
invariants.

One way to obtain coverings of a space is by using functions.

3/19



Definition 7 (Mapper complex) Given a function f : X → R, the the mapper complex is the nerve complex of the cover
obtained by the connected components of the cover given by overlapping intervals {In}n∈∆ of the real numbers.

Definition 8 (Čech complex) Given a metric space (X ,d) and ε > 0, the Čech complex is the simplicial complex given by
the nerve complex of the covering of closed balls of radious ε .

(Cε(X))k := {[x0, . . . ,xk] | ∃y ∈ X d(y,xi)≤ ε for every 1≤ i≤ k} .

Computationally it is very expensive to check for all simultaneous intersections of the balls and is easier to check only pairwise.

Definition 9 (Rips complex) Given a metric space X and ε > 0. The Rips complex or Vietoris-Rips complex Rε(X) is the
simplicial complex whose k-simplices are given by

(Rε(X))k :=
{
[x0, . . . ,xk] | xi,x j ∈ X, d(xi,x j)≤ ε for every 1≤ i, j ≤ k

}
.

When ε is sufficiently small the Vietoris-Rips complex has the same homotopy type of the Čech complex, but not in general.
For every ε > 0, there is an inclusion of simplicial complexes:

Cε ⊆ R2ε ⊆C2ε

so any topological feature that persists for an interval of ε on the Čech complex has to persists also on the Rips complex.

Both the Čech and Rips complexes have the same underlying graph; indeed the Rips complex is the clique complex on that
graph.

1.2 Persistent homology

The Čech and Rips complexes are filtered complexes, so it is possible to compute the topological features that persist when
varying the distance scale ε.

Definition 10 The barcode of a filtered simplicial complex K is a collection of horizontal line segments. These line segments
are shown in a plane with the filtration parameter on the horizontal axes and an arbitrary ordering of the elements in the
diagram as the vertical axes.

In the following figure we show the barcodes for a filtered complex.
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Supplemental Figure S2 2. Barcode representation of persistent homology of K

The 0-dimensional barcodes display the information of the evolution of connected components and in fact, a dendrogram
can be constructed out of it. For example, at time zero there are two connected components, the isolated point and the the rest.
At time one everything is connected. The barcode (0,1) represents the isolated point which becomes part of the other connected
component from time 1 on.

The 1-dimensional barcodes display the information of the evolution of cycles, for example at time 0 and time 1 there are
no cycles, from time 1 there are cycles and at time 3 one of the cycles gets filled. The barcode (2,3) represents a cycle with
birth time 2 and death time 3, the triangle on the top appears at time 2 and gets filled at time 3. The barcode (2,∞) represents
the square on the bottom that appears at time 2 and persists over time.

For a collection of data points with a notion of similarity, we calculate the barcodes of the persistence homology of the Rips
complex associated to the data, the filtration in this case corresponds to the paramater ε

Fig S2 3 shows an application of persitence homology: we take 60 random points on a rotated ellipse, calculate the
persistence homology in dimension 0 (black barcodes) and dimension 1 (red barcode) and we reconstruct the cycle detected on
the 1-dimensional barcode (red). Note that the cycle misses some points.
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Supplemental Figure S2 3. Data points on a rotated ellipse (up), barcode representation of persistent homology of
random points on an ellipse (left) and reconstruction of the cycle on an ellipse (right).

Mapper
To obtain a useful representation of our data we visualize it as its associated graph.

From the filter function f : X → R we consider the cover of connected components of the preimages of the cover of R by
overlapping intervals In. The mapper algorithm calculates the Čech complex of this cover. We visualize the 1-skeleton of the
mapper complex, i.e. the undirected graph that has vertices in the connected components of the preimages f−1(In) and edges if
two components intersect.

The input of the method Mapper is a collection of points with a distance function and a filter, a function defined on the
collection of points. The filter is used to define pieces that cover the collection of points. We apply a clustering algorithm to
each piece to obtain a set of local clusters. These are the vertices of the graph. Edges are added to the graph in the following
way: two local clusters are connected if they have points in common.

The implementation of mapper1D subdivides the range of the filter function into intervals with a fixed percentage of overlap.
The size of each interval and its shifting in order to have a precise fixed amount of overlap is calculated like this:

Intervalsize =
MaxFilter−minFilter

NumIntervas(1−Overlap)+Overlap)

StepSize = Intervalsize ∗ (1−Overlap)

The maximum possible dimension of the mapper complex can be estimated as follows:

For a (k+1)-dimensional face to exist
kStepsize < Intervalsize
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therefore

k <
1

1−Overlap

So for 0≤ Overlap≤ 1
2 we have only edges, for 1

2 ≤ Overlap≤ 2
3 we have 2-dimensional faces.

Any clustering algorithm can be used, in this paper we use agglomerative hierarchical clustering.

Figure S2 4 provides a visual road map through the Mapper algorithm applied to a sampled set.

Supplemental Figure S2 4. A given data set is used at the beginning (image A), for this example the points form a straight
line with a circle opening in the middle. For convenience we will use the euclidean distance to calculate the distance between
each pair of points, so we visualise the points in a metric grid (image B). We then project onto the x coordinate and regard this
as our filter function (image C). Next, we divide the filtered values into overlapping intervals of the same length (image D) and
construct their pre-images over the original set (image E). Notice how each pair of overlapping intervals is responsible for two
different intersecting subsets of points in the original set. Now, inside each pre-image, we run a clustering scheme to detect
natural clusters (connected components) among the subset of points (Image F). Each cluster is now regarded as a node in a
graph and will have edges between them if their intersection is non empty (Image G).
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1.3 Persistent homology of the genetic distance of malaria cases from Guapi region
We applied persistent homology algorithm to the genetic data from Guapi (total data: 98 cases). For population A (20 cases),
population B (42 cases), and population C (36 cases). Distance does not take into account time.

Note that when we consider all cases (populations A,B,C), figure S2 5, there are cycles (red barcodes), but when we take
each group (all times) separately the are no cycles, fig S2 6.

Supplemental Figure S2 5. Barcode representation of persistent homology of
all genetic data in Guapi

Supplemental Figure S2 6. Barcode representation of persistent homology of by groups in Guapi.

We explored the time dependence of the existence of cycles, for this we first took the same overlapping intervals used in the
mapper algorithm and cases from all groups (A,B,C).
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Interval Starting day Ending day
1 0.0000 248.4337
2 86.95181 335.38554
3 173.9036 422.3373
4 260.8554 509.2892
5 347.8072 596.2410
6 434.7590 683.1928
7 521.7108 770.1446
8 608.6627 857.0964
9 695.6145 944.0482

10 782.5663 1031

Supplemental Figure S2 7. Barcode representation of persistent homology of cases in intervals 1,2,3 and 4.
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Supplemental Figure S2 8. Barcode representation of persistent homology of cases in intervals 5,6,7,8, 9 and 10.
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Note that only in the last interval we observe three cycles (barcodes of dimension 1).
From the barcodes of the total cases (Fig S2 5), we expect to see 4 cycles and by looking interval by interval we just observe

three cycles in the last interval. If enlarging the intervals (precisely taking the union of two consecutive ones) we find another
cycle in the union of the intervals 6-7, three cycles in the union of the intervals 9-10 and none in the other unions of consecutive
intervals (not shown).

Interval Starting day Ending day
1 and 2 0.0000 335.3855
2 and 3 86.95181 422.33735
3 and 4 173.9036 509.2892
4 and 5 260.8554 596.2410
5 and 6 347.8072 683.1928
6 and 7 434.7590 770.1446
7 and 8 521.7108 857.0964
8 and 9 608.6627 944.0482

9 and 10 695.6145 1031

Supplemental Figure S2 9. Barcode representation of persistent homology of cases in interval 6-7 and 9-10

Interestingly, cycles only appear during peaks, suggesting the presence of recombinants during extended epidemics.

2 Social Network Analysis (SNA) of the results of Topological Data Analysis (TDA)
The Mapper implementation results in a graph connecting clusters. The aim of this paper, was to combine genetic and
epidemiologic variables with TDA. However, the output of such analysis is difficult to interpret and often counter intuitive. To
appropriately study the questions we intended to address, we further developed the analysis incorporating SNA of the TDA
results. Simple descriptive network statistics were calculated to characterise the relative importance of cases and locations
across time and space.

2.1 Aims
The purpose of this study was to describe the role of heterogeneity of infection upon parasite genetic diversity from a micro-
epidemiological perspective. This was done over spatial and temporal scales where most of the epidemic and genetic dynamics
could be observed. TDA analysis, combined with SNA, enabled us to:

• Understand how parasite subpopulations are connected over space; this is, determining whether subpopulations remain
constrained to specific locations over time, or if they vary over spatial and temporal dimensions, and if patterns existed.
TDA and SNA enabled us to understand local dynamics in terms of sources and sinks of parasite populations.
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• Describe the role of heterogeneity of infection on epidemic and inter-epidemic time-periods over time and space; this is,
studying genetic relatedness of single parasite cases over space and time, across heterogeneous epidemic characteristics.

• Characterise geographical regions in terms of their epidemiological relevance, including both genetic and epidemiological
characteristics; this is, understanding the aggregated effect of heterogeneous geographic locations on the dynamics of
parasite subpopulations and disease burden on segregated human populations.

2.1.1 Hypotheses
We hypothesised that observable patterns exist and deviate from the null hypothesis of random connections across space and
time (the resulting networks will diverge from random or probabilistic networks). Since one of the biggest computational
challenges is to estimate the range of possible networks of a given graph due to its complexity (2n), we focused on descriptive
statistics of two sub-graphs (cases, locations).

Our hypotheses were as follows:

• The single case parasite network will be characterized by epidemic and inter-epidemic time-periods. Cases contained in
epidemic clusters will be highlighted by the largest Pagerank values (since all the cases in an epidemic cluster will point
towards the node which connects the cluster to another cluster), whereas cases between epidemics will be characterized
by large betweenness centrality values (cases which connect large epidemic clusters which are not interconnected).
Pagerank and betweenness centrality can, but need not be proportional for each case (cases can be high in one, both, or
none).

• Case centrality (both pagerank and betweenness) will highlight epidemic effects on genetic diversity of subpopulations,
such as clone amplifications due to an epidemic, or bottlenecks due to random sampling after epidemic events.

• Geographic networks will describe different segregated and interconnected human populations. Each of these populations
will be connected to others by the degree of genetic diversity and epidemic characteristics. As such, locations and human
populations can be characterized as sources (high out-degree) or sinks (high in-degree), but most importantly, the location
network will characterize human mobility as described by epidemic and genetic dynamics. Thus, locations with high
betweenness centrality will describe nodes that connect populations which are otherwise isolated, such as transportation
hubs. Locations with high out-degree centrality are likely the result of epidemic outbreaks, pointing to locations where
parasite cases with similar genetic characteristics are observed, either preceding in time or in future periods.

2.2 Network Centrality Measures
Centrality measures in networks describe the relative importance of nodes of the graph under a certain criteria. The following
definitions of centrality measures describe the variables used in our study.

2.3 Betweenness Centrality
Betweenness centrality is a measure based on the shortest path (i.e the path that uses the least amount of edges for unweighted
graphs or the path with the smallest total weight of its edges for weighted graphs) between two specific nodes. This measure of
centrality was formalised by LC Freeman in 197760 and can be defined like this:

Definition 11 For a given graph G, the betweenness centrality b(v) of a node v ∈ G is:

b(v) = ∑
a6=b6=v

SPab(v)
SPab

where SPab is the total amount of shortest paths from a to b and SPab(v) the total amount of shortest paths from a to b that
pass through v.

Intuitively, betweenness centrality detects "hubs" in the structure of the network, nodes that if removed will make it harder
or impossible to travel across the graph.

2.4 Pagerank Centrality
Pagerank Centrality was first proposed in 1997 by Larry Page and Sergey Brin61 and is designed to identify the most relevant
node in a directed network if one interprets the edges as a direct reference. A formal definition is as follows:
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Definition 12 Given an adjacency matrix A of a graph G, the Pagerank centrality pr(vi) of a node vi ∈ G is the value that
satisfies the equation:

pr(vi) = α ∑
j

A ji
v j

L j
+

1−α

|G|

Where α ∈ [0,1] and

L j = ∑
i

A ji

This centrality is a variation of the eigenvector centrality, where the value of a node is extracted from the vector x such that:
Ax = λx (for some λ ∈ R). If one regards the edges as direct references, elements with high Pagerank values represent nodes
referenced by other high ranking nodes.

2.5 Results

Two networks with heterogeneity of degree distributions resulted from combining SNA and TDA. Figures S2 10 and S2 11
show variation of betweenness and Pagerank centrality among cases. Note that cases with highest Pagerank and betweenness
centrality were observed during epidemic years (2015, 2017) while cases with high betweenness centrality happened in
inter-epidemic years (2016). Interestingly, a selection of cases of subpopulation B had higher centrality values (Pagerank and
betweenness). A selection of cases of subpopulation C were also observed with high centrality values. Subpopulation A was
observed to have lower maximum centrality values than those cases for the other subpopulations. Tables S2 1 and S2 2 show
the most central cases for Pagerank and betweenness respectively.

Similarly, by contracting edges in the point intersection network, a contracted geographical graph (Geographic Network)
was constructed. By merging adjacent nodes whose cases had the same geographical location, a network whose nodes represent
a specific time, location and genetic diversity was built. Note that this is different than simply merging nodes by location,
which would change the topological properties of the network with respect to the 1-skeleton. The centrality values for this
nodes are shown in Figures S2 10 and S2 11. Three nodes were observed with high centrality values for both Pagerank and
betweenness: Bagrero-2, Carmelo-1 and Guapi-1. Bagrero-2 was observed with high centrality values at both epidemic (2015)
and inter-epidemic (2016) years, Carmelo-1 at both inter-epidemic (2016) and epidemic periods (2017), while Guapi-1 only
during epidemic interval (2017). Only one node was observed with high betweenness and low Pagerank: Cuerval-1, included
in the interval ranging from Apr-2016 to Nov-2016 (inter-epidemic).

Results of subpopulation geographical distribution are discussed in detail in the main text.

Sample ID Group Origin Date (mm/dd/yy) Pagerank Cent. Betweenness Cent.
GU-397 C Guapi 6/16/17 0.18 1360
GU-129 B Guapi 11/24/15 0.15 2891
GU-374 B Carmelo 5/7/17 0.08 2584
GU-78 C Guapi 4/20/15 0.03 556
CU-11 C Cuerval 2/2/16 0.03 165.9

GU-118 A Carmelo 3/1/16 0.03 75.5
GU-109 B El Firme 2/19/16 0.03 208.5
CU-25 C Cuerval 7/1/16 0.01 4

GU-124 A Guare 9/14/15 0.01 190

Supplemental Table S2 1. Top ten cases with highest Pagerank centrality in the case (Point Intersection) network
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Sample ID Group Origin Date (mm/dd/yy) Pagerank Cent. Betweenness Cent.
GU-129 B Guapi 11/24/15 0.15 2891
GU-374 B Carmelo 5/7/17 0.08 2584
CU-12 B Cuerval 4/24/16 0.01 2323.5

GU-397 C Guapi 6/16/17 0.18 1360
CU-31 B Cuerval 11/15/16 0.01 1127
CU-30 B Cuerval 11/7/16 0.00 1127
GU-78 C Guapi 4/20/15 0.03 556

GU-109 B El Firme 2/19/16 0.03 208.5
CU-6 C Playa Chacon 12/3/15 0.00 203

Supplemental Table S2 2. Top ten cases with highest betweenness centrality in the case (Point Intersection) network

Supplemental Figure S2 10. Pagerank and betweenness centrality for the case and geographic networks. Maps created using Tableau
2019.4 (https://www.tableau.com/). Source: OpenStreetMap62, © OpenStreetMap contributors, under an Attribution-Share-Alike 2.0
Generic licence ( https://creativecommons.org/licenses/by-sa/2.0/).
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A

B

Supplemental Figure S2 11. A. Pagerank and betweenness centrality values for the different nodes in the case and contracted
geographic networks. B. Case (left) and geographic (right) networks.
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Supplemental Figure S2 12. Geographical location of the different clonal groups. Clonal groups correspond to the longest zero cost
paths in the graph constructed using the pairwise genetic distances. This means that for any two samples a and b in the same clone group G,
there are samples v1, . . .vn ∈ G such that: a = v1, b = vn and the pairwise distance between vi and vi+1 is zero. Map created using Tableau
2019.4 (https://www.tableau.com/). Source: OpenStreetMap62, © OpenStreetMap contributors, under an Attribution-Share-Alike 2.0
Generic licence ( https://creativecommons.org/licenses/by-sa/2.0/).
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